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A quasi-maximum likelihood estimator of the break date is analyzed. Consis- 
tency of the estimator is demonstrated under very general conditions, provided 
that the data-generating process is not integrated. However, the asymptotic dis- 
tribution of the estimator is quite different for time series that are integrated 
of order one. In that case, when there is no break, the analyst can be spuri- 
ously led to the estimation of a break near the middle of the time series. 

1. INTRODUCTION 

The importance of considering structural change in statistical models is well 
documented in the literature (see the surveys by Zacks, 1983, and Krishnaiah 
and Miao, 1988). The problem is to  test whether or not a change in the 
parameters of the model has occurred and, if so, to estimate when and by 
how much. The problem of estimation has been studied for several models 
with different estimation techniques (see Hinkley, 1970; Yao, 1987; among 
others). Also, several tests have been proposed treating the break date as 
unknown (see Brown, Durbin, and Evans, 1975, and Hawkins, 1987, among 
others, for independent and identically distributed (i.i.d.1 observations or 
simple regression models, and Andrews, 1993, and Chu and White, 1992, 
among others, for more general models). However, Chu and White (1992) 
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gave examples of tests for changing trend such that when a series is gener- 
ated by an integrated process of order one (I(1))  with drift, but without 
structural change, the null hypothesis of no structural change will be rejected 
far too often. 

A similar problem occurs when testing for unit roots in economic time- 
series where it is necessary to know in advance whether there has been a 
structural change or not. Perron (1989) showed that standard tests of the unit 
root hypothesis against trend-stationary alternatives reject the unit root 
hypothesis too infrequently if the true data-generating process (DGP) is that 
of stationary fluctuations around a trend function that contains a one-time 
break. 

These dual problems occur because a time-series generated by an I (1 )  
process is very difficult to distinguish from one generated by a stationary 
process ( I ( 0 ) )with structural change. This is well illustrated in Hendry and 
Neale (1991). 

In this paper we concentrate on the estimation of the break date. We show 
that the quasi-maximum likelihood estimator (QMLE) for the break date is 
consistent under very weak assumptions on the error process provided it is 
not integrated of positive order. This extends previous theorems that require 
independence and normality of the errors (e.g., Krishnaiah and Miao, 1988). 
We also allow for trending regressors. 

There is no study of the effect of integrated processes on the distribution 
of the estimator of the break date. In this paper we derive the asymptotic 
distribution of the break date QMLE in this case. We show that when a 
variable is generated by an I(1)  process without any structural change, the 
estimation of a model with structural change will suggest a spurious break. 
This result is analogous to the spurious regression and spurious trend results 
in Granger and Newbold (1974), Phillips (1986), and Durlauf and Phillips 
(1988) and complements the findings of Chu and White (1992). 

In Section 2 we introduce a model of structural change and the QMLE of 
the break date. Asymptotic distributional results for the case where the error 
term is not integrated are given in Section 3.  Section 4 derives results for the 
case where the error term is integrated of order one. In Section 5 we report 
simulation evidence confirming that our theoretical results provide useful 
insights into what would be found in the analysis of samples of moderate 
size. Proofs of the main theorems are given in the Appendix. 

2. STRUCTURAL CHANGE MODEL 

Given observations ( y,,xj ) , where x,is p x 1,  suppose we model the DGP 
of y, as 
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where ( E ~ )is an I (0)stochastic process. Consider a general change function 
for 0,: 

where g ( T ) ( h )is a function of h E [0,1]and may depend on the sample 
size T. With the prior belief that there is a single structural change occurring 
at some unknown point ko, the model to be estimated can be written as 

This corresponds to /3 = = ( P 2 - in (2), where 10,and g ( T ) ( h )  /31)lrA,A,l 
denotes the indicator function and ko = [ T h o ]the integer part of Tho.The 
quasi-log-likelihood function is given by 

Conditional on k ,  the QMLE of P I ,  P 2 ,  and a: are 

and G;?(k)= RSS,(k)/T, where 

The concentrated quasi-log-likelihood function is thus 

which solves /2,, is the integer koThe QMLE of 

min 
p s k s T - p  

G:(k) or min 
p s k 5 T - p  

RSST(k ) .  

Also define 

where < X are some prespecified constants in [0,I ] .  A reason for a choice 
of [ & , X I  other than the full interval [0,1]is that such a choice might yield 
significant precision gains if the change point is in, or close to, [A,) \ ] .Monte 
Carlo results in James, James, and Siegmund (1987) and Talwar (1983) for 
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testing structural change in the location model suggest such a result. A more 
complete discussion of this issue in the context of testing for structural 
change can be found in Andrews (1993). 

The following condition will be assumed to hold in the rest of the paper. 
Let DTbe a p x p diagonal matrix with diagonal elements dlT,where d,T are 
(possibly different) powers of T and d ; ~ '-+ 0. This matrix is needed to oor- 
malize xr properly because the components of x, may be of different orders 
of magnitude in t. The condition is given by the following: 

[All 	D;"~ XI[::' X ~ X ; D ; I / ~  3 Q (A )  uniformly in A E [0, I ]  for some DT, where 
Q ( A )is positive-definite, symmetric, and an absolutely continuous, mono- 
tonically increasing function of X;that is, Q(A2)- Q()\ ,)is positive-definite 
for all A, > X I .  

Condition [All is a law of large numbers-type of condition. It excludes I (1)  
processes. It can be seen that [All holds in the following leading examples. 

Examples 
1 .  	Change in trend: x, = ( l , t ) ' ,[All holds with 

2 .  	Change in regression coefficients: x,is a p x 1 random vector. Under standard 
regularity conditions, 

uniformly in X E [O,l], with Q a positive-definite matrix. It follows that [All 
holds with DT = TIpand Q ( A )= AQ, 

3. CONSISTENCY 

Under the assumption that the e ,  are independent and normally distributed, 
it has already been shown that the QMLE kT is consistent when there is a 
single structural change at some unknown A = Xo E (0 , l )  (e.g., Krishnaiah 
and Miao, 1988). However, this result is based on too restrictive assumptions. 
Under more general conditions, we show that the break date estimator kr 
converges in probability to the true break date Xo when there is a single 
structural change at some X = Xo E (0, I )  or to the set ( 0 , l )  if there is no 
structural change. 

Consider the following condition: 

[A21 g ( T ) ( h )is a function of bounded variation on X E [O,l] , which may depend 
on the sample size T, such that for DT in [All ,  
~ - b / 2 ~ 1 / 2r 	 g 'T ' (A)  - + g * ( A )  

uniformly in h 6 [0,1] for some function g* on  [0,1] and some con-
stant b > 0. 
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Condition [A21 characterizes g *  as the limiting behavior of g ( T ) ;in particu- 
lar, if g ( ' ) ( h )  = g ( h ) ,  then g*(X)= F ; , g ( h ) ,  where F, is a selection matrix. 
It can be seen that [A21holds in the following examples where a single change 
has occurred at some date k ,  = [TX,] and h, E ( 0 , l )  is a constant. 

Examples 
1 .  	Change in trend: 

(a) Broken intercept: 	y, = P I  + 6111, ,k ,+,1 + P 2 t  + E , .  Since g ( T ) ( A )= 
( 6 1 , 0 ) ' l l h , h , 1  = g ( A ) ,  [A21  holds with b = 1 and g * ( A )  = g ( A ) .  

(b) Broken discontinuous trend: y, = P I  + 6 , l,,,k,+ll+ P2t  + 621~,,k,1+11t + t , .  
Here, g ( T ' ( h )= ( 6 ,  , 6 2 ) ' l j h > h l l l ,  and [A21 holds with b = 3 and 

(c) 	 Broken but continuous trend: y, = P I  + P 2 t  + 621,,,k,+11 ( t  - k,) + t,. 
In this case, g ( " ( A )  = ( - C ~ ~ [ T A ~ ]  =, 6 2 ) ' l l x > h , l ,and [A21 holds with b 3 
and 

2 .  	Change in regression coefficients: Since g " ' ( A )  = 611,,,,,, = g ( A ) ,  [A21  holds 
with b = 1 and g " ( A )  = g ( A ) .  

Consider now the following condition: 

[A31  For D T  in [ A l l ,  

where R is ap-dimensional Gaussian process on [O,I ]  with R ( 0 ) = 0 and hav- 
ing mean 0 and covariance E [ R ( A l ) R ( A 2 ) ' ]= C(min(A,,A 2 ) ) , with 

1 [([el )([el 11 

C ( A ) = lim -E 


T-m T ,=I X I € ,  
r= I 

X !EI  


absolutely continuous for all A. 

This condition is general enough to allow 6 ,  and x, to be weakly dependent, 
heterogeneous random variables but not integrated of positive order (see, 
e.g., Wooldridge and White, 1 9 8 8 ) .  

Examples 

1 .  	Change in trend: Suppose that t ,  satisfies the regularity conditions in Phillips 
and Perron ( 1 9 8 8 )  such that 0* = l i m , ~ ( ~ ? / ~ )  t , .> 0 ,  where ST = 
Then, 

f h  

with Wthe standard one-dimensional Brownian motion. The variance of R ( A ) is 
h 

( A ) = 0 ( l , r ) ' ( l , r )  d r  = g 2  1": ,;] d r  = u 2 Q ( A ) .  
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2. 	Change in regression coefficients: Suppose now that E, and x, satisfy the 
assumptions in Ploberger, Kramer, and Kontrus (1989).Then, 

with W the standard p-dimensional Brownian motion. 

THEOREM 3.1. Given D G P  ( I )  and (2), suppose that [All and [A31 are 
satisfied. 

1 .  	If [A21 holds with g*(A)  = 611x,h,,,and 6 E IRD\ ( 0 ) ,  und O < 1< A, < i\ < 1 ,  
then k ,  5 A,, as T-. m .  

2. 	Suppose there is no change, i.e., g ( T ) ( A )  = 0.  
(a) I f O < & < i \ <  1, then 

LT * argmax~t,h,h]R ( A ) ' Q ( A ) F 1 R ( X )  

+ [ R ( l )- R ( A ) l ' [ Q ( l )- Q ( A ) l - ' I R ( l )- R ( A ) l .  

( b )  I f ) \ = O a n d i \  = 1 ,  then kT  5 ( 0 , l )  as T-ca.  

Remark 1.  In part 1,  6 can depend on X o .  It is possible that part 1 could 
be relaxed to allow 1= 0 and i= 1 but the proof of this would require dif- 
ferent arguments, as in Hinkley (1970) and Yao (1987). 

Remark 2. Part 1 extends previous results such as those of Hinkley (1970) 
and Krishnaiah and Miao (1988) in that x,and 6 ,  may be weakly dependent 
and heterogeneously distributed; our result also allows for trending regres- 
sors. Comparing to Bai (1994), which concentrates on the mean change of 
linear processes, our condition [A31 has broader applicability, but we do not 
have a rate of convergence result. 

Remark 3. Part 2(a) shows that when there is no structural change, con- 
sistency of ?,, is not possible if it is restricted as in (6); instead, ?,, has an 
asymptotic distribution with support equal to [&,)\I(see also Remark 1 after 
Theorem 4.1). We note that these results in fact formalize a discussion in 
Andrews (1993, p. 839). 

4. SPURIOUS BREAK: y ,  IS INTEGRATED OF ORDER ONE 

Suppose now that the true DGP is characterized by no structural change, but 
t, is [ ( I ) ,  violating condition [A3]. We show that when estimating a model 
with structural change the QMLE estimator I;, will suggest a spurious 
break. This is shown in Theorem 4.1 as well as in the simulations in Sec- 
tion 5 .  

Suppose then that we estimate model (3) as in Section 2 and that [All con- 
tinues to hold for x,.However, y, is generated by an I (1)  process and there 
is no structural change. Instead of (1) and ( 2 ) , the DGP for y, is given by 
yo = 0 and 
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with ( 7 , ) and I(0)  stochastic process such that the following condition holds: 

[A3'] For D, in [All  and some constant a > 0, 

where G is some p-dimensional functional of a Gaussian process. 

The main difference between [A31 and [A3'] is the rate of convergence in 
the term T - o ' ~ .  

Exainples 

1. Change in trend: [A3'] holds with a = 2 and 

2. 	Regression: [A3'] holds with a = 1. Following Park and Phillips (1988), let 
1vr = satisfy a multivariate invariance principle: T-", zjT:] W,(x;,~,)' * 
B ( A ) ,  a ( p  + 1)-vector Brownian motion B = ( B ; ,B,)' with covariance matrix 
0 := V + A + 22: Then, 

where A,, = V,, + A,, is the corresponding lower left submatrix. 

THEOREM 4.1. Suppose the DGP for y, is given by ( 7 ) , [ A l l  and [A3'] 
are satisfied, and 0 < )\ < Xo < h < 1. Then, 

Remark 1. The theorem says that K T  has an asymptotic distribution with 
support equal to [ & , X I ;  we were, however, unable to extend this result to 
the case where )\ = 0 and h = 1. Our simulation results (to be discussed in 
Section 5 )  show that, in contrast with the distribution of part 2 of Theo- 
rem 3.1, which is more concentrated in the tails, this distribution is more con- 
centrated in the middle of the sample even when the support is enlarged to 
[0,1]. That is, it is more likely that KT would suggest a spurious break near 
the middle of the sample when y, is I (1)  without a break, but KT is more 
likely to be close to and (or 0 and I )  when y, is I ( 0 )  without a break. 
This result is new but analogous to the well-known spurious regression and 
spurious trend results. 
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Remark 2. Suppose that x, = (xl , ,  . . . ,x,,)'. Condition [A3'] can be 
written as 

with a; = a > 0. If, however, the ai are not all the same, then let or, = 
maxlSi,, a;. Then Theorem 4.1 still holds with the elements of G ( l )  and 
G(X) that correspond to a; < a, replaced by zeros. 

5. SIMULATIONS 

In this section we discuss some simulations. The model used in the simula- 
tions is the change in mean model with autocorrelated disturbances: 

Yr = P r  + E r  with Pr = 6 l [ t ? [ ~ ~ ] + l ] ,  

where = C$E,-~ + y r  and q, i.i.d, N(0 , l ) .  The number of replications for 
each experiment was 100,000, and we have used the normal pseudo-random 
number generator in GAUSS-386 for i.i.d. N(0 , l )  innovations. The results 
are presented in Figures 1-3. The break-point estimators are obtained by con- 
sidering all possible break points as in (5) except in Figure 2b. We do not 
report our further results for the change in trend models nor for the model 
employed by Ploberger and Kramer (1992) and Andrews (1993) because all 
the results were qualitatively identical. 

Figure 1 considers a change in the middle of the sample with 6 = 1, X = 
0.5, and q5 = 0. For T = 100, the estimator is concentrated around the true 
break date. Although not shown here, as T increases, the estimator becomes 
more precise. Also, when some autocorrelation is present (e.g., q5 = 0.5), the 
estimator loses precision when compared with the case of no autocorrelation, 
4 = 0. We have also considered a change closer to the beginning of the sam- 
ple (e.g., X = 0.25). The same comments made for the previous case apply 
here. The only difference is that the mode of the distribution is shifted to the 
new break date, but with little change in the dispersion of the distribution. 

For the case of no change with I (0 )  errors, Figure 2a gives the distribu- 
tion of k when it takes all possible values, whereas Figure 2b is the distribu- 
tion when k is restricted as in (6) with & = 0.15 and )\ = 0.85. For C$= 0, the 
mass of the distribution is more concentrated in the tails than in the middle. 
Also, although not shown here, when q5 increases or T decreases, the mass 
tends to become less concentrated in the tails. The same conclusions hold 
when k is restricted for various and X. 

Figure 3a illustrates the case of spurious break: no change but with I (1)  
errors (6 = 0, q5 = 1) for T = 100. As opposed to the second case, and more 
like the first case, the mass of the distribution is more concentrated in the 
middle than in the tails. The contrast between the graphs clearly suggests 
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FIGURE1. Distribution of when 6 = 1, A = 0.5, and 4 = 0 for T = 100. 

what we mean by a spurious break. We have also simulated the asymptotic 
distribution, T = cw,for the previous case. The density estimate was approx- 
imated using T = 1,000 and 100,000 replications, and the resulting empiri- 
cal density function was smoothed with a Gaussian kernel with a bandwidth 
equal to 0.2. The result is shown in Figure 3b. Simulations also showed that 
the asymptotic distribution seems to be a very good approximation for val- 
ues of T as low as 25 .  

In conclusion, the simulation results support the asymptotic results of 
Sections 3 and 4. Moreover, they suggest that the insights provided by the 
asymptotics are relevant for quite small sample sizes. 

6.  CONCLUSION 

In this paper we have shown that the quasi-maximum likelihood break date 
estimator is consistent when the error term satisfies a condition that allows 
for general error processes not integrated of positive order. We also obtained 
the asymptotic distribution of the break date estimator when the series is gen- 
erated by an I(1)process. In this case, estimation of a structural change 
model will result in the appearance of a spurious break. 
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FIGURE2. a. Distribution of /; when 6 = 0 and 4 = 0 for T = 100. b. Distribution 
of /; when 6 = 0 and o = 0 for T = 100 with 1= 0.15 and X = 0.85. 

FIGURE3. a. Distribution of /; when 6 = 0 and 4 = 1 for T = 100. b. Distribution 
of k when 6 = 0 and @ = 1 for T = 100. 
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Our results, together with some of those cited in the introduction, suggest 
that disentangling information in data about both unit roots and structural 
change is likely to be a difficult task. This is essentially the graphical insight 
suggested by Hendry and Neale (1991). The important question suggested 
by such results is that of construction of tests for structural change and esti- 
mators of break dates that are valid irrespective of whether a unit root is 
present or not in the noise component. For an attempt in this direction, see 
Perron (1991). 
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APPENDIX 

LEMMA A. 1 .  Giuen [Al l  and [A2] ,we have 

as T -+ ca, uniforinly in X E [O, 1] . 
Proof. From [A l l ,  [A2] ,  and equation (28)of Kramer, Ploberger, and Alt (1988), 

5 l " d ~ ( r ) g * ( i ) .  

This proves (8) .The proof of (9) is similar. 

Proof of Part 1 o f  Theorem 3.1. Let 

and 

It is easy to see that RSST(k )= C:=, eT2 - M T ( k )SO that 

iT= min{h : X = argmax,,, I,,-,l M T ( [ T ~ ] ) ] .  (12) 

Using [A l l - [A3] ,it  follows after some manipulations and Lemma A. 1 that 

T - ~ M ~ ( [ T x ] )  (13)3 L ( x ) .  
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as T -t co,uniformly in A E [ & , % I ,  where 

Using the definition of g*(A) ,  

r [ ( Q ( l )-Q(Ao))61r[Q(I)-Q ( A ) l - ' [ ( Q ( l )-Q(Ao))6l ,  A s  A,, 

1 + [ ( Q ( l )-Q(A))GI1[Q(1)-Q ( A ) I - ' [ ( Q ( l )- ~ ( A ) ) 6 1 ,  A> A,, 

s f ( [ Q ( l )-Q(Ao)l [ Q ( l )- Q ( A ) l - ' [ Q ( I )  -Q(Ao)l)6, A s  A,, 

h ' ( ~ ( 1 )-2Q(Xo) + Q ( X , ) Q ( A ) - ~ Q ( ~ , ) ) ~ ,  x>x,.  
Because by [Al l  Q(A,)  - Q ( A l) is positive-definite for all A, > A,, it is easy to see 
that a maximum of L ( A )  occurs exactly at X = X o  for any 6 f 0. Because the con-
vergence in (13) is uniform in A € [&,%], this proves the theorem. 

Proof of Part 2 of Theorem 3.1. Because there is no change, E; = E, in ( 1 1 ) .  Thus, 
by [ A l l ,  [A3] ,and the continuous mapping theorem, we have for 1s A s % 

where M ( X )  = R ( A ) ' Q ( A ) - ' R ( A )+ [ R ( l )- R ( A ) l l [ Q ( l )- Q ( X ) ] - ' [ R ( l )-
R(X)]. Another application of the continuous mapping theorem gives subpart (a). 
By [Al l  q ( X )  := dQ(A)/dX is a nonnegative-definite symmetric matrix. By L'Hos-
pital's rule, 

Q ( A )lim -
k-o A 

= 4 ( 0 ) .  

Also, by [A3] ,let dC(A) /dA= P(X)P(A) 'with P ( A )  = U ( A ) A ( A ) " ~ U ( X ) ' ,where 
A ( X )  is the diagonal matrix of eigenvalues and U ( A )the orthogonal matrix of col-
umn eigenvectors of dC(A)/dA.Then the process 

where W is the standardp-dimensional Brownian motion, has the same distribution 
as R ( X ) .With probability one (w.p. l) , the set of limit points of the net 

is equal to the closed ellipsoid 
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where Hp= (xE lRp: 1x1i 1)  (see Chapter 7 of Arnold, 1974). This result together 
with (15) implies that w.p.1 

lim sup R(A)'Q(A)-'R(A) 
h+O 

2 log log (t) 
= lim sup 

= max yi, 
I 

where y,are the eigenvalues of P(O)q(O)-'P(O)', provided that q(0) is invertible. 
Then, w.p.1 

lim sup R(A)'Q(A)-'R(A) = 03. 
A-0 

(16) 

Similarly, it can be shown that w.p.1 

l imsup[R( l )  - R(A)] ' [Q( l )  - Q(A)] - ' [R( l )  - R(A)] = 03. 
A- I 

If q ( 0 )  is not invertible, the same conclusions hold by considering the Moore-
Penrose inverse of q (0) .  Following an argument similar to the proof of Corol-
lary 1 of Andrews (1993), it follows that suph,lo,llMT([T$]) 5 m. But, because 
sup,,[,~, MT([TA])= O p ( l )  for 0 < A <  X < 1, then A, -+ ( 0 , l )  as T-+ m when 
A = 0 and X = 1. This proves subpart (b).-

Proof of Theorem 4.1. From (7) it is easy to see that (12) and (10) hold with 
E: = y, in (10). In (12), substitute M,([Tu]) by T-"MT([Tu]). This does not change 
k, for any T because a does not depend on u. From (lo), we have 

TP"MT(k) 

By [Al l ,  [A3'], and the continuous mapping theorem, we have for A r X 
T-"MT([TA]) * G(X)'Q(X)-'G(A) 

+ [G(1)  - G(A)l1[Q(1)- Q(A)l - ' [G( l )  - G(A)I. 

The proof is completed by another application of the continuous mapping theorem. 
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